D–环境培养箱空气对流法
(返回图表)
D1 -空气套孵化器
夹套二氧化碳孵化器采用两种主要的温度控制方法:水套式和空气套式内部静压。水套式培养箱具有更好的温度均匀性,但必须每周排水和清洗。air -jacket model更轻,更容易运输,免维护。
D2–双对流培养箱
双对流培养箱在机械和重力对流模式之间切换。重力对流模型通过加热元件在内腔底部引入热量,并允许重力使加热空气在整个存储区域上升。机械对流系统利用内部风扇将热空气分配到内部腔室。
D3–强制空气培养箱
与机械对流系统类似,强制空气孵化器利用内部或外部鼓风机将热空气分配到整个内腔。强制空气和机械对流培养箱在进入培养箱后可缩短恢复时间,使这些设计成为高通量细胞培养实验室的理想选择。
D4 -重力孵化器
重力对流培养箱将热量引入内部室的底部,让重力在上升时将加热的空气分散到整个存储区域。重力对流系统保持较低的空气变化率比机械或强制空气单位-理想的实验室存储非水样品容易过度干燥。
D5 -机械孵化器
机械对流培养箱通过利用风扇将热空气分配到内腔,实现行业领先的温度均匀性。由于其较高的换气率,机械对流培养箱可以在不蒸发生长介质的情况下快速加热从冷库转移的样品。
E–电压
(返回图表)
E1 - 120孵化器
120伏的连接适用于美国的标准住宅电源插座。
E2 - 240孵化器
与设计工作在120V的设备相比,240伏特的连接需要更少的电流(安培数)和更小的导体。
F -特殊应用功能-微生物培养箱功能
(返回图表)
F1 - B.O.D.孵化器应用程序
生物需氧量(B.O.D.)应用通过量化微生物消耗的氧气,在水样上测量有机物质时确定水样中的污染量。BOD孵化器利用Peltier冷却器来保持污水处理,萌发研究和植物培养的精确温度均匀性。
F2–果蝇培养箱
果蝇孵化器通过结合昼夜光循环(通过内部LED灯)、珀耳帖热冷却(用于超温保护)和机械对流(用于快速温度变化),保持果蝇培养的最佳条件。
F3 -高安全性孵化器
高安全性孵化器利用受限制的访问控制,例如指纹扫描仪和钥匙卡读者,以保护临床诊断,重组蛋白质产生或基因表达的高价值样品。
F4 -小型孵化器
紧凑的模型与可选堆叠套件是拥挤的研究实验室或教学机构的理想选择。
F5 -定时开启/关闭周期的孵化器
对于培养方案超过标准48小时培养周期的样本,高级方案模型包括数字控制器,具有定时开/关周期,用于实时样本监测。
F6 - 具有UV照明的培养箱
培养箱消毒主要有紫外线消毒和高温消毒两种方法。254纳米的杀菌紫外光可使微生物遗传物质变性。带有紫外线照明的孵化器配备了数字控制器和负载存在传感器,以防止样品受到紫外线照射。高温去污循环利用热,潮湿的空气消毒内室时,培养箱是免费的样品。
F7 -可堆叠孵化器
某些台式孵化器可与可选的堆叠套件兼容,最多可容纳三个小占地面积的单元。可堆叠的单位是理想的拥挤的实验室培养独特的细胞系,不能存储在一个单一的培养箱。
F8–远程细胞培养监测培养箱
带有远程细胞培养监测系统的培养箱允许通过移动应用程序或LIMS集成进行实时、可视的样本观察。
G - 细胞培养培养箱湿度和CO2对照
(返回图表)
G1–二氧化碳气体培养箱
二氧化碳二氧化碳培养箱使用红外线或热电偶传感器来保持细胞和组织培养生长的最佳条件。可选的二氧化碳警报警报操作员当他们的油箱需要更换时。
G2 -细胞培养培养箱-湿度控制Co2培养箱
真核细胞在95%相对湿度条件下生长最佳。为临床诊断设计的培养箱利用红外传感器维持精确的湿度水平,以促进人体细胞生长。
G3 - O2气体孵化器
对于厌氧细胞培养或缺氧研究,某些培养箱包括氧气控制,以将培养箱内的氧气水平降低至0.1%。
按品牌购买CO2孵化器
按类别和孵化器配件购物
减少仪器停机时间