D -环境培养箱空气对流法
(回到图)
D1–空气夹套培养箱
夹套二氧化碳培养箱采用两种主要的温度控制方法:水套式和空气套式内部增压系统。水套培养箱提供更好的温度均匀性,但必须每周排水和清洁。空气夹套型号更轻,更易于运输,且无需维护。
D2–双对流培养箱
双对流孵化器在机械和重力对流模式之间切换。重力对流模型通过加热元件在内腔底部引入热量,并允许重力使加热空气在整个存储区域上升。机械对流系统利用内部风扇将热空气分配到内部腔室。
D3 -强制空气孵化器
与机械对流系统类似,强制空气培养箱利用一个内部或外部鼓风机来分配加热的空气通过内部室。强制空气和机械对流培养箱具有减少的恢复时间后,室被访问,使这些设计理想的高通量细胞培养实验室。
D4–重力培养箱
重力对流培养箱将热量引入内部腔室的底部,并允许重力在加热空气上升时将其分布到整个存储区域。重力对流系统保持较低的换气率比机械或强制换气装置-非常适合储存易过度干燥的非水样品的实验室。
D5–机械培养箱
机械对流培养箱通过利用风扇将热空气分配到内腔,实现行业领先的温度均匀性。由于其较高的换气率,机械对流培养箱可以在不蒸发生长介质的情况下快速加热从冷库转移的样品。
F–特殊应用功能-微生物学中的培养箱功能
(回到图)
F1 - B.O.D.孵化器应用程序
生物需氧量(B.O.D.)应用通过定量微生物分解有机物时消耗的氧气来确定水样中的污染量。BOD培养箱利用Peltier冷却器来保持精确的温度均匀性,用于废水处理、发芽研究和植物栽培。
F2 - 果蝇培养培养箱
果蝇孵化器为果蝇的培养保持最佳的条件,结合白天和夜间的光循环(通过内部LED灯),Peltier热冷却(超温保护),和机械对流(快速温度变化)。
F3–高安全性孵化器
高安全性孵化器利用受限制的访问控制,例如指纹扫描仪和钥匙卡读者,以保护临床诊断,重组蛋白质产生或基因表达的高价值样品。
F4–小型孵化器
紧凑型具有可选的叠加包适用于拥挤的研究实验室或教学机构,工作台空间有限。
F5–具有定时开/关周期的培养箱
对于具有超出标准48小时培养周期之外的孵化协议的样本,高级协议型号包括具有定时开/关周期的数字控制器,用于实时样本监控。
F6 - 具有UV照明的培养箱
培养箱室消毒的两种主要方法是紫外消毒和高热净化。杀菌紫外线光,在254纳米处发射,变性微生物遗传物质。具有UV照明的孵化器配有数字控制器和负载存在传感器,以防止来自UV暴露的样品。高温净化循环利用热,潮湿的空气,当培养箱没有样品时灭菌内腔。
F7–可堆叠培养箱
某些台式培养箱与可选堆叠套件兼容,可容纳多达三个小型单元。可堆叠单元非常适合拥挤的实验室培养无法在单个培养箱中储存的不同细胞系。
F8 - 远程细胞培养监测孵化器
带有远程细胞培养监控系统的孵化器可以通过移动应用程序或LIMS集成进行实时、可视化的样本观察。
G - 细胞培养培养箱湿度和CO2对照
(回到图)
G1–二氧化碳气体培养箱
二氧化碳培养箱使用红外线或热电偶传感器来维持细胞和组织培养生长的最佳条件。当他们的油箱需要更换时,可选的二氧化碳警报提醒操作人员。
G2-细胞培养培养箱-湿度控制Co2培养箱
真核细胞在95% RH的湿度水平下最适合生长。用于临床诊断的孵化器利用红外传感器保持精确的湿度水平,以促进人体细胞的生长。
G3–氧气培养箱
对于厌氧细胞培养或缺氧研究,某些培养箱包括氧气控制,以将培养箱内的氧气水平降低至0.1%。
按品牌店铺二氧化碳孵化器
按类别和孵化器配件进行采购
减少仪器停机时间
告诉我们一些您的定制需求,Terra应用程序专家将与您联系24个工作小时内。
Terra的工作时间为:太平洋标准时间周一至周五上午9:00-下午6:00
或向Terra产品专家寻求帮助:(714) 578 - 6100